Spessartine, Mn$^{2+}\text{Al}_2(\text{SiO}_4)_3$

Spessartine
Rodehorst U, Geiger C A, Armbruster T
American Mineralogist 87 (2002) 542-549
The crystal structures of grossular and spessartine between 100 and 600 K
and the crystal chemistry of grossular-spessartine solid solutions
11.615 11.615 11.615 90 90 90 Ia-3d

<table>
<thead>
<tr>
<th>atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Wyckoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>0.0348</td>
<td>0.0479</td>
<td>0.6523</td>
<td>96h</td>
</tr>
<tr>
<td>Mn</td>
<td>0</td>
<td>0.25</td>
<td>1/8</td>
<td>24c</td>
</tr>
<tr>
<td>Al</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16a</td>
</tr>
<tr>
<td>Si</td>
<td>3/8</td>
<td>0</td>
<td>0.25</td>
<td>24d</td>
</tr>
</tbody>
</table>

Raman Active Modes

<table>
<thead>
<tr>
<th>WP</th>
<th>A$_{1g}$</th>
<th>A$_{1u}$</th>
<th>A$_{2g}$</th>
<th>A$_{2u}$</th>
<th>E$_u$</th>
<th>E$_g$</th>
<th>T$_{2u}$</th>
<th>T$_{2g}$</th>
<th>T$_{1u}$</th>
<th>T$_{1g}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>96h</td>
<td>3</td>
<td>·</td>
<td>·</td>
<td>·</td>
<td>6</td>
<td>·</td>
<td>9</td>
<td>·</td>
<td>·</td>
<td>·</td>
</tr>
<tr>
<td>24d</td>
<td>·</td>
<td>·</td>
<td>·</td>
<td>·</td>
<td>1</td>
<td>·</td>
<td>3</td>
<td>·</td>
<td>·</td>
<td>·</td>
</tr>
<tr>
<td>24c</td>
<td>·</td>
<td>·</td>
<td>·</td>
<td>·</td>
<td>1</td>
<td>·</td>
<td>2</td>
<td>·</td>
<td>·</td>
<td>·</td>
</tr>
<tr>
<td>16a</td>
<td>·</td>
</tr>
</tbody>
</table>

Total number of modes:
3A$_{1g}$ + 8E$_g$ + 14T$_{2g}$ = 25