Characterization of defects and the local structure in natural and synthetic alunite (K, Na, H$_2$O)Al$_3$(SO$_4$)$_2$(OH)$_6$ by multi-nuclear solid-state NMR spectroscopy

ULLA GRO NIELSEN,1 JURAJ MAJZLAN,2 BRIAN PHILIPS,3 MARTINE ZILIOX,4 AND CLARE P. GREY1,*

1Department of Chemistry and Center for Environmental Molecular Science, SUNY Stony Brook, Stony Brook, New York 11794-3400, U.S.A.
2Institute for Mineralogy and Geochemistry, Albert-Ludwigs University of Freiburg, Albertstrasse 23b, Freiburg, D-79104, Germany
3Department of Geosciences and Center for Environmental Molecular Science, SUNY Stony Brook, Stony Brook, New York 11794-2100, U.S.A.
4Center for Structural Biology, SUNY Stony Brook, New York 11794-5115, U.S.A.

ABSTRACT

The local structural environments in a series of natural and synthetic alunite samples [ideally AAl$_3$(SO$_4$)$_2$(OH)$_6$, A = H$_2$O, D$_2$O, Na+, and K+] have been probed by solid-state 1H, 2H, 23Na, 27Al, and 39K NMR spectroscopy. The natural alunite [KA$_3$(SO$_4$)$_2$(OH)$_6$] and synthetic hydronium alunite samples contain few structural defects, whereas the synthetic natroalunite and alunite samples have ca. 10% Al vacancies based on 27Al NMR. A new 27Al local environment (Al$_0$) was observed and assigned to Al with one Al vacancy in the first cation sphere. Three different proton environments, Al$_1$-OH, Al$_2$-OH, and H$_2$O are detected by 1H and 2H MAS NMR. The hydronium ion (H$_3$O$^+$) is only observed in hydronium alunite, and is associated with the stoichiometric regions of the sample. It was not detected in 1H and 2H NMR spectra of alunite and natroalunite despite K (Na) occupancies of significantly less than 100%, as determined from elemental analysis. Thus, our NMR results suggest that the common assumption, namely that an A vacancy and an Aliv vacancy are compensated by adding an H$_2$O$^+$ and 3 H$^+$ (creating 3 Al-OH$_2$ groups), respectively, is too simplistic. Instead, a significant fraction of the Aliv vacancies are compensated for by 4 H$^+$ ions, resulting in 4 Al-OH$_2$ groups per vacancy. This substitution is accompanied by the simultaneous deprotonation of a H$_3$O$^+$ ion present on the A site. The resultant H$_2$O molecule is unnecessary for charge balance, accounting for the A-site deficiency often observed. The presence of Aliv and A$^+$ vacancies appears closely correlated based on NMR.

Keywords: Alunite, solid-state NMR, hydronium ion, 23Na NMR, 27Al NMR, 1H NMR, 2H NMR, 39K NMR

INTRODUCTION

The alunite [AAl$_3$(SO$_4$)$_2$(OH)$_6$, A = H$_2$O, Na+, and K+] and jarosite [4Fe$_3$(SO$_4$)$_2$(OH)$_6$] series are members of the large alunite group of minerals and related compounds that are relevant in several areas of science, including environmental chemistry (Stoffregen et al. 2000) and materials science (Greeden 2001). These minerals are commonly precipitated from acidic mine waters or acidic hydrothermal solutions (Stoffregen et al. 2000). They are also used in hydrometallurgy, especially in processing of Zn and U ores (Dutrizac and Jambor 2000). Monovalent and divalent metal ions including Pbii, Cdii, and Tl$^+$ may be co-precipitated and incorporated in the structure of these minerals, resulting in removal and immobilization of these species from the aqueous environment. Moreover, the magnetic ions in the jarosite structure are located in nodes of a Kagomé lattice and the magnetic properties of these compounds have received much attention (Greeden 2001; Harrison 2004; Nocera et al. 2004). In addition, the magnetic ions on the jarosite structure have been used as evidence for aqueous processes on the planet (Klingelhöfer et al. 2004; Maddon et al. 2004; Squyres et al. 2004).

Minerals of the alunite group crystallize in space group R

Their general formula is AB_jSO$_4$(OH)$_6$ where $B = Fe^{iii}$, Aliii, Viii, Criii,... and $A = H_2$O, Na$, K^+$, Rb^+, Ca$, Ag^+$, $\frac{1}{2}$ Pbii, NH$_4$... (Dutrizac and Jambor 2000). Synthetic and natural members of this group generally exhibit considerable non-stoichiometry and contain structural defects on the B site. The presence of these defects may significantly affect the magnetic properties of phases where $B = Fe^{iii}$, Viii and Criii as well as the ion exchange capabilities of jarosite (Kurata et al. 1984; Ozeki et al. 1989). Substantial numbers of vacancies are also found at the A$^+$ site, which usually has an occupancy of 80–95% (Greeden 2001). A further complication is the presence of excess water molecules (~1 H$_2$O per unit formula) (Ripmeester et al. 1986; Bohmhammer et al. 1986; Drouet and Navrotsky 2003; Drouet et al. 2004). Recently, synthesis procedures for stoichiometric transition metal jarosite have been reported (Grohol and Nocera 2002; Grohol et al. 2003).

The structure of alunite (Fig. 1) consists of sheets of AlO$_2$(OH) octahedra. The sheets are decorated by sulfate tetrahedra, and the A$^+$-ions are located between the sheets. The six ligands coordinated to Aliii include four equatorial OH groups shared between the neighboring Aliii ions (denoted as Al$_1$-OH in this paper) and two axial O atoms of sulfate groups above and...
below the octahedral sheet. The monovalent ions are coordinated by 12 O atoms or hydroxyl groups. There are weak hydrogen bonds between the Al2-OH groups and the O atoms in the sulfate tetrahedron that point towards the cavity (Wang et al. 1965; Schukow et al. 1999; Lager et al. 2001).

A stoichiometric alunite structure contains a single Al3+ crystallographic site denoted here as Al1. The structure also contains a single A (A = Na+, K+, H3O+) site (Wang et al. 1965; Schukow et al. 1999; Lager et al. 2001). Thus, the 27Al, 23Na, and 39K NMR spectra of a stoichiometric alunite will each consist of a single resonance. A 1H NMR spectrum of a stoichiometric alunite will contain resonances from the Al2-OH groups only, whereas that of a pure hydronium alunite will contain Al2-OH and H2O resonances in a ratio of 2:1. Deviation from the ideal stoichiometry and the presence of structural defects result in formation of additional Al, A, and H environments, as discussed below. An introduction of Al vacancies (i.e., at the B site) can create several local environments, one of which is shown in Figure 2. A vacancy at the B site is thought to be compensated by 3H+ to maintain charge balance:

\[
\text{Al(OH)}_2\text{O}_2 + 3\text{H}^+ = \square(\text{OH})_2\text{O}_2 + \text{Al}^{1+} + \square(\text{OH})_2\text{O}_2 + \text{H}_2\text{O} + \text{Al}^{1+}
\]

(1)

forming water molecules coordinated to the Al atoms (AlD) adjacent to the vacancy, i.e., AlD-OH2 groups. However, an Al vacancy creates four terminal Al-OH2 groups, as illustrated in Figure 2, and it is possible that all four groups become protonated, the fourth proton being compensated by a vacancy or hydronium ion on the A site:

\[
\text{Al(OH)}_2\text{O}_2 + 3\text{H}^+ + \text{H}_2\text{O} \rightarrow \square(\text{OH})_2\text{O}_2 + \text{H}_2\text{O} + \text{Al}^{1+}
\]

(2)

An alternative to this simple, static model for charge compensation is a dynamic model that includes chemical exchange. For example, the protons could hop between four (or more) sites in the structure. Such a model will be difficult to investigate with diffraction techniques. Solid-state NMR spectroscopy is a versatile probe of local structure, but also of molecular dynamics and chemical exchange processes spanning a large range of time scales from μs to min. For example, 1H MAS NMR can be used to probe motion from the time scale of the 1H quadrupole interaction (μs to s) (Maricq and Waugh 1979; Spiess 1983; Weintraub and Vega 1995).

It is still a matter of debate as to whether the hydronium ion exists in the alunite structure or whether it reacts with a basic site and is converted to H2O. Only the oxygen position of the H3O+ ion has been reliably determined by diffraction studies (Lager et al. 2001; Majzlan et al. 2004), as the hydrogen positions appear disordered. Chemical analysis can determine the Na+ and K+ contents, but not the method of charge compensation (e.g., presence of H3O+ or substitution of OH– for OH– ligands). Because the calculated occupancy of the A site by Na+ and K+ is rarely equal to 1.0, an H3O+ ion is assumed to be present at the A’ site. This allows the fraction of H2O on the A’ site to be calculated as 1 – (Na+ + K+). However, even the A’ site may not be fully occupied, as recently demonstrated for hydronium jarosite where an occupancy of 91% was determined by single-crystal X-ray diffraction (Majzlan et al. 2004). This uncertainty in A-site occupancy complicates the question of the H2O existence and the determination of the correct chemical composition of alunite.

Vibrational studies yielded ambiguous results, because the vibrational bands of H2O and H2O2 overlap (Lager et al. 2001; Bishop and Murad 2005). Solid-state 1H and 2H NMR spectroscopy has proven the most successful technique for probing the local proton environments and for identifying the hydronium ion in alunite due to the distinctive chemical shift (Bohmhammel et al. 1986; Ripmeester et al. 1986). Several different proton/deuteron environments including H2O2, Al1-OH, and Al-OH have been observed by Ripmeester et al. (1986) and Bohmhammel et al. (1986). Kydon et al. (1968) suggested the existence of the hydronium ion in the hydronium gallium jarosite compound based on variable temperature measurements of proton relaxation rates (T1) and analysis of the second moments of 1H NMR spectra.

To our knowledge, no solid-state 27Al NMR data have been reported for alunite despite the widespread application of solid-state 27Al NMR in studies of synthetic materials and minerals. The sensitivity of 27Al NMR to local structural environment should make it a useful probe for the average and defect structures in the alunite series, complementing previous work using
1H and 2H NMR in these materials (Bohmhammer et al. 1986; Ripmeester et al. 1986). Here we report the results from multinuclear 1H, 2H, 23Na, 27Al, and 39K NMR spectroscopic study of a series of synthetic and natural alunite samples, both near- and non-stoichiometric. Structural defects are readily observed in these solid-state NMR spectra. Moreover, the presence of H2O is closely linked to the number of structural defects and readily probed by high-speed 1H MAS NMR spectroscopy.

EXPERIMENTAL METHODS

Synthesis
All synthetic samples were prepared from mixtures of H2O (deionized), D2O (99.8% isotopic; Alfa-Aesar), K2SO4 or Na2SO4 (reagent grade, Fisher), and Al(SO4)3·(H2O)17, reagent grade, Alfa Aesar). The initial composition of all mixtures is given in Table 1. For the synthesis of the deuterated samples, these solid-state NMR spectra. Moreover, the presence of H3O+ is closely linked to the number of structural defects and readily probed by high-speed 1H MAS NMR spectroscopy.

X-ray diffraction
Powder X-ray diffraction (XRD) patterns were collected with a Bruker AXS D8 Advance diffractometer, employing Cu Kα radiation and a graphite monochromator. Phase purity of the samples was checked and the lattice parameters calculated by profile fits using GSAS (Table 1) (Larson and von Dreele 1994).

Elemental analysis
The samples (~50 mg) were dissolved in 20 mL of distilled 4 N HCl in a microwave digestor. After the digestion, the samples were analyzed for Na, K, and Al by atomic absorption spectroscopy (Analytik Jena, AAS Vario 6 spectrometer), and for SO4 by ion chromatography (Dionex DX 120). The results from elemental analysis are shown in Table 1.

NMR spectroscopy
Solid-state 1H, 23Na, and 27Al NMR experiments were performed on a Bruker Avance 600 NMR spectrometer using 2.5 mm H/FX and 4 mm H/FX MAS NMR probes with spinning speeds in the range 25–35 and 10–14 kHz, respectively. Solid-state 1H and 23K MAS NMR spectra were recorded on a Chemagnetics Infinity Plus 500 MHz NMR spectrometer using 4 and 5 mm HX T3 MAS probes, respectively. Spectra were referenced using H2O [δ(1H) = 4.8 ppm], D2O [δ(1H) = 4.8 ppm], 1M NaCl [δiso(23Na) = 0 ppm], 1M AlCl3 [δiso(27Al) = 0 ppm], and KBr [δiso(39K) = 55 ppm] as external standards. r.f.-field calibrations were performed using these standards or the sample. The magic-angle was carefully set by minimizing the line width of spinning side bands (ssbs) from the satellite transitions for the 23Na resonance from NaNO3, 1H from CD3COONa, or from 19F in KBr depending on the actual configuration of the probe. 1H and 23K MAS NMR spectra were recorded using a Hahn-echo sequence to suppress 1H background signals and probe ringing, respectively. Additional 1H MAS NMR spectra were recorded at 9.4 T (400 MHz) using a 4 mm H/FX MAS probe with a limited 1H background using 10–14 kHz spinning speeds. 1H, 23Na, and 27Al NMR spectra were recorded using short (0.3–1 μs, 10–20°) pulses to ensure uniform and quantitative excitation. 23Al QMAS NMR (Frydman and Harwood 1995) spectra were obtained using the 3 pulse z-filter sequence (Massiot et al. 1996) with and without 1H decoupling TPPM (Bennett et al. 1995) at γ1H/2π(1H) = 90 kHz. Several 27Al hetero-nuclear correlation (HETCOR) NMR spectra were recorded with contact times in the range 40 to 150 μs, where the cross-polarization (CP) conditions were optimized on the samples.

Analyses of the NMR spectra were performed with DMFit (Masiot et al. 2002), STARs (3H) (Skibsted et al. 1991), and WinSolids (39K NMR) developed by Klaus Eichele. Simulations of quadrupole tensor distributions were performed by using the method of Caster et al. (1994).

RESULTS AND DISCUSSION

Table 1. Chemical composition of the solutions, from which the alunite samples were precipitated, and composition of the solid samples determined from elemental analysis

<table>
<thead>
<tr>
<th>Sample</th>
<th>Starting composition of the synthesis solution</th>
<th>Synthesis conditions</th>
<th>Sample composition* (normalized to 2SO4)</th>
<th>Lattice parameters (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-Alu</td>
<td>37 mL H2O, 1.50 g K2SO4, 6.3 g Al sulfate</td>
<td>70 °C, 1 hour</td>
<td>K+ 0.79</td>
<td>c = 17.125(3)</td>
</tr>
<tr>
<td>Na-Alu</td>
<td>37 mL H2O, 1.84 g Na2SO4, 6.0 g Al sulfate</td>
<td>70 °C, 9 hours</td>
<td>Na+ 0.83</td>
<td>c = 16.664(1)</td>
</tr>
<tr>
<td>H2O-Alu</td>
<td>25 mL H2O, 4.5 g Al sulfate, pH adjusted to 3.5 by adding MgCO3, powder</td>
<td>ultrasonicated for 15 min; allowed to stand with stirring for 1 hour at 190 °C, 2 days</td>
<td>Al3+ 2.83</td>
<td>c = 17.133(1)</td>
</tr>
<tr>
<td>D2O-Alu</td>
<td>1.8 g of dehydrated Al sulfate; 10 mL D2O</td>
<td>sealed in a Parr vessel with a stirrer; stirred at RT overnight; 190 °C, 3 days</td>
<td>Al3+ 3.01</td>
<td>c = 17.123(1)</td>
</tr>
<tr>
<td>Nat-Alu</td>
<td>– natural alunite (Chinkuashih mine, Taiwan)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Na-Alu-D</td>
<td>10 mL D2O, 497 mg Na2SO4, 1.627 g Al sulfate</td>
<td>70 °C, 1 hour</td>
<td>a = 6.9789(3)</td>
<td>c = 17.248(3)</td>
</tr>
<tr>
<td>K-Alu-D</td>
<td>14.5 mL D2O, 15.5 mL H2O, 1.22 g K2SO4, 5.10 g Al sulfate</td>
<td>70 °C, 1 hour</td>
<td>a = 6.9964(4)</td>
<td>c = 16.667(1)</td>
</tr>
</tbody>
</table>

* The error of the elemental analyses is ±5%.

23Al MAS and 3QMAS NMR
Synthetic hydronium and deuteronium alunite (H2O-Alu and D2O-Alu). The experimental 23Al MAS NMR spectrum of...
H$_2$O-Alu (Fig. 3a) contains a single resonance with a pronounced second-order quadrupolar line shape characteristic for a 27Al site with close to axial symmetry ($\eta_Q = 0$). This resonance is assigned to Al1, the only Al site in a defect-free alunite (Fig. 2). A very similar spectrum is obtained for the D$_2$O-Alu sample, as illustrated in Figures 3a and 3b. Optimizations of the quadrupolar line shape using a model with a single site gave $C_Q = 8.45(10)$ MHz and $\eta_Q = 0.10(10)$ for H$_2$O-Alu (Table 2) and nearly identical parameters within the error-limits for D$_2$O-Alu. A significant improvement of the fit can be obtained by including a small distribution of the 27Al quadrupole coupling (ca. 0.5 MHz), but the average values do not differ substantially from those given in Table 2. This small distribution in C_Q likely arises from structural distortions due to the presence of defects. Chemical shift anisotropies were not considered as spectra recorded with high spinning speeds (35 kHz) at low field (8.4 T), where chemical shift anisotropies are negligible for 27Al, could also be reproduced with a distribution in C_Q. No other resonances could, however, be distinguished in 27Al MAS NMR spectra recorded at 8.4, 11.7, 14.1, and 16.5 T (not shown), suggesting that the defect concentration in these samples is low.

Synthetic alunite (K-Alu) and natroalunite (Na-Alu). The 27Al MAS NMR spectra of K-Alu and Na-Alu are more complex than those of H$_2$O/D$_2$O-Alu, as illustrated in Figures 3d and 3e, respectively. The higher frequency singularity is about four times higher than the lower frequency singularity, suggesting that one or more additional resonances are present. An increase in the size of the quadrupole coupling constants for Al1 is also observed, as seen by the shift of the lower frequency singularity to more negative frequencies, as compared to the same discontinuity for Al1 in H$_2$O-Alu.

Four different 27Al resonances, denoted Al1, Al0, Al1, and Al2, can be resolved in the 3QMAS NMR spectrum of K-Alu (Fig. 4), all in the spectral region for octahedrally coordinated aluminum (Müller et al. 1981; Smith 1993; Jansen et al. 1998). The spectrum is not necessarily quantitative due to the large variation in C_Q for the different sites and therefore in the MQ excitation and conversion efficiencies (Amoureux et al. 1996). The strong 1H-27Al dipolar coupling, which is scaled by the MQ order (factor of 3) in the F1 dimension, was suppressed in these experiments by high-power proton decoupling during evolution and acquisition. 1H decoupling improved resolution in F1, although it resulted in a distortion of the quadrupolar line shapes especially for the Al1 resonance, as seen in Figure 4b. Spectra recorded without 1H decoupling contained less distorted line shapes, but had a lower spectral resolution resulting in overlap of the Al1 and Al0 resonances. The NMR parameters were extracted based on the best fits to the positions of the discontinuities in the spectra (Fig. 2). The quadrupole coupling constant of the main resonance [Al1, $C_Q = 10.6(5)$ MHz] is 25% larger than observed for H$_2$O-Alu. The asymmetry parameter and isotropic chemical shift are similar to those for the Al1 site in H$_2$O-Alu. The second most intense resonance detected is assigned to the defect site Al0 (see Fig. 2), which also has a substantial, but smaller quadrupole coupling, $C_Q = 6.0(3)$ MHz, and $\eta_Q = 0.75(10)$. Two additional resonances, Al0 and Al2, are present, which have smaller quadrupole coupling constants and similar isotropic chemical shifts, $\delta_{iso} = 2.6$ (0.5 ppm), second-order quadrupole products, $SOQE = C_Q^2(1 + \eta_Q^2/3)$, of 4.0(3) and 3.3(4) MHz as calculated from the 3QMAS spectrum. These resonances were tentatively assigned to impurities and discussed in greater detail later.

The 3QMAS NMR of Na-Alu (data not shown) is similar to that for K-Alu except that only one broad resonance (Al1) can be identified in the region for Al1 and Al2 (Table 2), in addition to the more intense Al1 and Al0 resonances. These spectra are consistent with a higher concentration of aluminum vacancies and defects in both Na and K-Alu, as compared with H$_2$O-Alu and H$_2$O-Alu. The larger concentration of Al$^{3+}$ vacancies in Na-Alu and K-Alu are in agreement with the analyzed Al:sulfate ratio in these samples (Table 1).

Natural alunite (Nat-Alu)

The natural alunite sample gives rise to a 27Al MAS spectrum (Fig. 3f) with main features that are similar to those of the synthetic alunite samples, with the Al1 site predominating.

Table 2. 27Al NMR quadrupole coupling parameters and isotropic chemical shifts for synthetic and natural alunites determined from analysis of MAS and 3QMAS spectra recorded at 14.1 T

<table>
<thead>
<tr>
<th>Sample</th>
<th>C_Q (MHz)</th>
<th>η_Q</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$O-Alu</td>
<td>3.4 ± 0.4</td>
<td>8.45 ± 0.10</td>
<td>0.10 ± 0.10</td>
</tr>
<tr>
<td>D$_2$O-Alu</td>
<td>3.2 ± 0.5</td>
<td>8.48 ± 0.10</td>
<td>0.10 ± 0.10</td>
</tr>
<tr>
<td>K-Alu, Al1</td>
<td>4.3 ± 1.5</td>
<td>10.3 ± 0.3</td>
<td>0.05 ± 0.10</td>
</tr>
<tr>
<td>Al0</td>
<td>3.2 ± 1.5</td>
<td>6.0 ± 0.3</td>
<td>0.75 ± 0.10</td>
</tr>
<tr>
<td>Al1</td>
<td>2.2 ± 0.8</td>
<td>4.0 ± 0.3*</td>
<td>3%</td>
</tr>
<tr>
<td>Al2</td>
<td>0.5 ± 0.5</td>
<td>3.3 ± 0.4*</td>
<td>3%</td>
</tr>
<tr>
<td>Na-Alu, Al1</td>
<td>5.2 ± 0.8</td>
<td>10.3 ± 0.5</td>
<td>0.08 ± 0.10</td>
</tr>
<tr>
<td>Al0</td>
<td>1.4 ± 1.5</td>
<td>6.3 ± 0.4</td>
<td>0.75 ± 0.10</td>
</tr>
<tr>
<td>Al1</td>
<td>1.8 ± 0.8</td>
<td>2.9 ± 0.4*</td>
<td><2%</td>
</tr>
</tbody>
</table>

Notes: 3QMAS NMR spectra were recorded with and without high-power 1H decoupling.

* Second-order quadrupole parameter ($SOQE, SOQE = C_Q^2(1 + \eta_Q^2/3)$, determined from 3QMAS NMR spectra.
Simulations of the line shape from a slice of the 3QMAS spectrum results in \(\delta_{\text{iso}} = 3.9(2.0) \) ppm, \(C_Q = 10.6(5) \) MHz, and \(\eta_Q = 0.05(10) \). The most noticeable difference between the natural and synthetic alunite is that the Al\(_D\) site (\(C_Q \approx 6.5 \) MHz) is not observed in the 27Al MAS spectrum and only a weak resonance (AlI) is observed in the 3QMAS NMR spectrum, at a position expected for the AlI\(_1\) or AlI\(_2\) sites (not shown). The data indicate that the natural sample contains very few B-site vacancies.

1H and 2H MAS NMR spectra

Hydronium alunite (H\(_3\)O-Alu). Two 1H resonances with \(\delta_{\text{iso}} = 4.0 \) and 10.6 ppm are readily apparent in the 1H MAS NMR spectrum of hydronium alunite (Fig. 5a). They are assigned to Al\(_2\)-OH and H\(_3\)O\(^+\) groups, in agreement with previous results (Bohmhammel et al. 1986; Ripmeester et al. 1986). Strongly hydrogen bonded groups also resonate in the high frequency region (Berglund and Vaughan 1980), but 2H MAS NMR (Ripmeester et al. 1986, vide infra) indicate that the 10.6 ppm resonance is associated with a highly mobile species, excluding this possibility. A fit to the 1H MAS NMR spectrum requires the inclusion of two additional weaker resonances at \(\delta_{\text{iso}} = 6.4 \) and 9.5 ppm. The resonance at 6.4 ppm has been assigned to Al-OH\(_2\) groups (Bohmhammel et al. 1986; Ripmeester et al. 1986). Non-bound H\(_2\)O molecules usually resonate between 4 and 8 ppm, which overlaps with the chemical shift range for Al-OH\(_2\) groups (Berglund and Vaughan 1980; Ratcliffe et al. 1985; Akitt and Elders 1988) complicating the assignment. The 6.4 ppm resonance is broader (FWHM = 3.0 kHz) than that for the Al-OH\(_2\) group (FWHM = 1.3 kHz), which may be due to a combination of effects including 1H-1H homonuclear dipolar coupling, chemical exchange, molecular motion, or the presence of multiple sites. Previous 2H NMR studies have shown that the individual Al-OD\(_2\) and D\(_3\)O\(^+\) groups remained mobile down to ca. 77 K (Ripmeester et al. 1986). To test whether any chemical exchange occurs between the Al-OH\(_2\), H\(_2\)O, and H\(_3\)O\(^+\) groups, variable temperature 1H MAS NMR spectra were recorded from –150 to 250 °C. No significant changes were seen in this temperature range, i.e., no onset or freezing out of fast chemical exchange among Al-OH\(_2\), H\(_2\)O, and H\(_3\)O\(^+\) occurs.

It is clear that 1H NMR is more sensitive to the presence of small concentrations of defects than the 27Al NMR spectroscopy. Using the intensities for the 10.6 and 4.0 ppm resonances, obtained from the fit of the 1H MAS NMR spectrum in Figure 5a, a ratio for I(Al\(_2\)-OH):I(H\(_3\)O\(^+\)) of 1.37:1 is obtained. This value deviates significantly from the theoretical value of 2:1 based on the ideal, stoichiometric crystal structure. Structural defects and vacancies will alter this ratio significantly.

Deuterated hydronium alunite (D\(_3\)O-Alu). The experimental 1H MAS NMR spectrum of deuterated hydronium alunite (Fig. 6a) shows two spinning sideband (ssb) manifolds associated with resonances at \(\delta_{\text{iso}}(\text{H}) = 4.0(5) \) and 10.1(5) ppm. A quadrupole coupling constant \(C_Q \) of 235(9) kHz and an axial symmetric quadrupole tensor \(\eta_Q = 0.02(5) \) are obtained for the 4.0 ppm site from a least-square fit to the integrated ssb intensities. This value is in excellent agreement with values of \(C_Q = 240 \) kHz and \(\eta_Q = 0.0 \) obtained from 2H static NMR by Ripmeester et al. (1986). Using the correlation between 2H quadrupole coupling
alunite sample with nominally 12% H$_3$O, which is in excellent agreement with our measurement.

The width of the ssb pattern for the second site with $\delta_{iso} = 10.1$ ppm is significantly narrower and has a much smaller 1H quadrupole coupling caused by rapid molecular motions of the deuterons on this site. Least-squares optimization to the integrated ssb intensities gave $C_Q = 17(5)$ kHz. The optimizations are less sensitive to the variations of the asymmetry parameter due to the weak quadrupole interaction. A best shallow best-fit minimum is observed for $\eta_0 = 0.45$, which also reproduces the intensity of the ssbs manifold from D$_3$O$^+$ in the simulations. Characteristic values for the quadrupole tensor are observed for various types of motion. For example, -OD$_2$ groups with rapid C_2 motion are characterized by $C_Q = 70$ kHz and $\eta_0 = 1$ (Soda and Chiba 1969; Spiess and Sillescu 1981) and a D$_3$O$^+$ ion rotating about its C$_3$ axis results in $C_Q = 70$ kHz and $\eta_0 = 0.00$ (1/3 of the full tensor). Thus, the much smaller value determined here ($C_Q = 17$ kHz) reflects a more complex motional averaging involving rotation around more than one axis, but that is less than complete isotropic motion. Ripmeester et al. (1986) estimated a C_Q of approximately 24 kHz for a model with twelve-site averaging. A much weaker resonance due to a third site with $\delta_{iso} = 5.9(3)$ ppm is visible in the isotropic region, but absence of ssbs prevented further analysis.

Excellent agreement is observed between the full experimental spectrum and a simulation performed using the parameters for the two main sites discussed above, when a relative intensity of 1:0.53(5) for OD:D$_3$O$^+$ is employed (Figs. 6a and 6b). The relative intensity is in excellent agreement with the 1:0.5 ratio expected from the crystal structures confirming the complete occupancy of the A site by the D$_3$O$^+$ ion in this synthetic sample. It should be emphasized that our 1H and 2H MAS NMR studies were performed on two samples with different concentrations of defects (Table 1). Normalized to the sulfate, elemental analysis of deuterated hydronium alunite suggest that the sample is near-stoichiometric (D$_3$O) Al$_{3.83}$(SO$_4$)$_2$(OH)$_{5.49}$(H$_2$O)$_{0.51}$, (Table 1). The calculation of the H/D contents assumes full occupancy on the A$^+$ site, which may not be a correct assumption (Majzlan et al. 2004).

The 1H MAS NMR spectrum of D$_3$O-Alu (not shown) contains the same resonances as seen for H$_2$O-Alu. Additional fine structure is observed in 1H MAS NMR spectrum of the deuterated hydronium alunite, and three different peaks, at 10.1, 11.0 (ca. 90% of the intensity), and 11.5 ppm are partly resolved. 1H MAS NMR spectra recorded at 16.4 T (700 MHz) shows that the peak position is independent of the magnetic field strength.

Thus, the three resonances originate from slightly different local environments and are not due to fine structure caused by, e.g., J-coupling or second order effects. This splitting may originate from slightly different local environments.

FIGURE 6. 1H MAS NMR spectra of deuterated sample (a) D$_3$O-Alu (4 kHz), (c) K-Alu-D (5 kHz), and (d) Na-Alu-D (5 kHz). (b) A simulation of D$_3$O-Alu using $\delta_{iso} = 4.0$ ppm, $C_Q = 235$ kHz, $\eta_0 = 0.02$ for OD and $\delta_{iso} = 10.3$ ppm, $C_Q = 17$ kHz, $\eta_0 = 0.45$ with a relative intensity of 2:1 for the OD and D$_3$O$^+$ sites.

The synthetic alunite (K-Alu and K-Alu-D). The 1H spectrum of K-Alu (Fig. 5b) shows two peaks, the Al$_2$-OH group at $\delta_{iso} =$
3.9 ppm and a resonance at δiso = 6.4 ppm with relative intensities of 1:0.53. The very intense 6.4 ppm resonance suggests the presence of a significant amount of Al\(^{3+}\) vacancies in this compound, assuming that assignment of this resonance to Al-OH\(_2\) groups is correct. The signal from the hydronium ion (δiso = 10.6 ppm) observed in H\(_2\)O-Alu is not visible in the \(^1\)H MAS NMR spectrum.

The \(^1\)H MAS NMR spectrum (Fig. 6c) of a partially deuterated sample, K-Alu-D, prepared in a similar manner to K-Alu, contains two resonances. The first is assigned to the Al\(_2\)OD groups and has values of δiso = 4.0(5), C\(_Q\) = 237(5) kHz, and η\(_0\) = 0.07(5), as obtained from least-squares optimization to the integrated ssb intensities. An O-H···O distance of 2.87(5) Å is obtained using the correlation between C\(_Q\) and rO-H---O (Poplett and Smith 1978). A single, intense peak with a broad Lorentzian line shape [full-width, half-maximum (FWHM) = 800 Hz] centered near δ = 7.0 (1.5) ppm is also observed with no associated ssbs. The lack of ssbs implies chemical exchange and/or isotropic rotation on the time scale of the quadrupole coupling for this resonance. The characteristic ssb pattern expected for an Al-OH\(_2\) group undergoing rapid flips around the C\(_2\) axis is not observed. One possibility is that the Al-OD\(_2\) groups are strongly hydrogen-bonded and therefore rigid; in this case, since the chemical shift difference between the Al\(_2\)-OD and Al-OD\(_2\) groups is small in comparison to the ssb linewidth, the signal due to the Al-OD\(_2\) group cannot be resolved from the Al\(_2\)-OD resonance. Very slow motion, on a timescale governed by both C\(_Q\) and the spinning rate, on a timescale governed by both C\(_Q\) and the spinning rate, on a timescale governed by both C\(_Q\) and the spinning rate, on a timescale governed by both C\(_Q\) and the spinning rate, on a timescale governed by both C\(_Q\) and the spinning rate. A line shape analysis of this per-deuterated sample show the presence of two peaks, Al-OH (δiso = 4.9 ppm) and a weaker Al-OH\(_2\) resonance (δiso = 7.5 ppm), similar to those observed for Na-Alu. Again, both the \(^1\)H and \(^1\)H NMR results suggest that slow motion involving the Al-OH\(_2\) groups is occurring, which may distort the intensities seen in the echo spectra (\(^1\)H).

Natural Alunite (Nat-Alu). The \(^1\)H MAS NMR spectrum of this sample (Fig. 5d) shows a broad resonance with δiso = 4 ppm with approximately 95% of the total spectral intensity. Within uncertainty the isotropic chemical shift is identical to that for the Al\(_2\)-OH/H\(_2\)O group in synthetic K-Alu. Two peaks in the region for Al-OH, and H\(_2\)O with δiso = 5.2 and 6.7 ppm, respectively, are obtained from a fit of the \(^1\)H MAS NMR spectrum, as illustrated in Figure 5d. The resonance at δiso = 5.2 ppm is assigned to an unknown impurity or defect. These results are consistent with the \(^27\)Al data, which suggest the presence of very few defects.

Slow-speed \(^1\)H MAS NMR spectra. Single-pulse \(^1\)H MAS NMR spectra were recorded using a low proton background probe. These spectra show the same resonances as seen in the \(^1\)H MAS Hahn-echo experiments (Fig. 5); this is illustrated in Figure 7 for selected alunite samples. Both the Al\(_2\)-OH and Al-OH\(_2\) resonances have several intense ssbs indicating strong \(^1\)H-Al\(^{3+}\) dipolar coupling. For all samples, the Al-OH\(_2\) resonance is more intense in the single-pulse spectra than in the echo-experiments, implying that this system is strongly coupled and that different relaxation times (T\(_2\)) probably affects the data obtained in the echo-experiment. The intensity is quite similar to that of the Al\(_2\)-OH resonance (Fig. 7b). For Na-Alu, ca. 90% of the intensity in the center band is from Al\(_2\)-OH and ca. 10% Al-OH\(_2\) based on fitting to the center band only, higher than observed in the echo-experiment. However, precise quantification of these slow speed single-pulse \(^1\)H MAS NMR spectra proved difficult and unambiguous solutions to the fits could not be obtained, because of complicated centerband and ssb peak shapes owing to a combination of chemical shifts anisotropy (CSA) and dipolar coupling.

\(^{27}\)Al \(^1\)H HETCOR NMR

H\(_2\)O-Alu. HETCOR is a 2-dimensional NMR experiment, which gives cross-peaks between protons and aluminum that are in a close spatial proximity. We note that these spectra are not necessarily quantitative, due to variations in CP efficiency. The \(^{27}\)Al \(^1\)H HETCOR spectrum of H\(_2\)O-Alu shows the presence of two cross-peaks. The more intense is centered at δ(\(^1\)H) = 5 ppm and the second at δ(\(^1\)H) = 10 ppm (Fig. 8). The two cross-peaks

Table 3

<table>
<thead>
<tr>
<th>Compound</th>
<th>Group</th>
<th>δiso (ppm)</th>
<th>Intensity*</th>
<th>Concentration†</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-Alu</td>
<td>Al-OH</td>
<td>3.9 ± 0.3</td>
<td>65 ± 3</td>
<td>78 ± 3%</td>
</tr>
<tr>
<td></td>
<td>Al-OH(_2)</td>
<td>6.4 ± 0.3</td>
<td>35 ± 3</td>
<td>21 ± 3%</td>
</tr>
<tr>
<td>Na-Alu</td>
<td>Al-OH</td>
<td>4.9 ± 0.3</td>
<td>93 ± 3</td>
<td>≈ 95%</td>
</tr>
<tr>
<td></td>
<td>Al-OH(_2)</td>
<td>7.9 ± 0.3</td>
<td>8 ± 5</td>
<td>≈ 5%</td>
</tr>
<tr>
<td>H(_2)O-Alu</td>
<td>Al-OH</td>
<td>4.0 ± 0.3</td>
<td>48 ± 3</td>
<td>73 ± 4%</td>
</tr>
<tr>
<td></td>
<td>Al-OH(_2)</td>
<td>6.2 ± 0.5</td>
<td>13 ± 4</td>
<td>≈ 5%‡</td>
</tr>
<tr>
<td></td>
<td>H(_2)O(^+)</td>
<td>9.5 ± 0.5</td>
<td>4 ± 3</td>
<td>≈ 5%‡</td>
</tr>
<tr>
<td>Nat-Alu</td>
<td>Al-OH</td>
<td>3.9 ± 0.3</td>
<td>92 ± 5</td>
<td>≈ 93%</td>
</tr>
<tr>
<td></td>
<td>Al-OH(_2)</td>
<td>6.7 ± 0.5</td>
<td>5 ± 4</td>
<td>≈ 3%</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>5.2 ± 0.5</td>
<td>4 ± 4</td>
<td>≈ 3%</td>
</tr>
</tbody>
</table>

* This relates to the total integrated intensity of the peak.
† The relative intensity of each functional group corrected for the spin multiplicity as needed and normalized.
‡ Total intensity of the two resonances.

Notes: Spectral intensities are obtained from deconvolution of the isotropic region as well as the spinning side bands from echo-experiments. The experiments have not been corrected for variations in T\(_2\).

\(^1\)H chemical shifts (δiso) and relative intensity for the alunites determined from deconvolution of \(^1\)H MAS NMR spectra recorded at 14.1 T [\(^1\)H = 600.1 MHz].
show quite different 27Al line shapes, the $\delta^{(1)}(1H) \approx 10$ ppm cross-peak resembling that of the Al1 environment, the $\delta^{(1)}(1H) \approx 5$ ppm cross-peak showing much more intensity at lower frequency and more closely resembling the 27Al spectra of Na-Alu and K-Alu. The line shape of the 5 ppm cross-peak is consistent with the presence of resonance(s) from one or more defects, in addition to the resonance due to Al1. These defect resonances may be enhanced in the HETCOR spectrum, because the smaller values of CQ for these environments, in comparison to the CQ value of Al1, result in their more efficient cross-polarization.

K-Alu. The 27Al ^{1}H HETCOR spectrum of K-Alu (Fig. 9) shows the presence of a single, broad cross-peak with a center of gravity at $\delta^{(1)}(1H) \approx 5$ ppm and a cross-section in the 27Al dimension gives a line shape with the same features as seen in the 27Al MAS NMR spectrum of K-Alu. Thus, 27Al ^{1}H HETCOR experiments confirm that all four 27Al resonances are linked to the protons (Fig. 3d). Unfortunately, the resolution in the proton dimension is lower than in single-pulse ^{1}H MAS NMR experiments, and it was not possible to resolve the Al$_2$-OH and Al-OH$_2$ resonances with the spinning frequencies used in these experiments. The efficient cross-polarization observed for Al-OH$_2$ groups suggest that these are fairly rigid. A similar spectrum was obtained for Na-Alu (not shown).

39K MAS NMR

To obtain further information about the local structure, 39K MAS NMR were recorded of K-Alu and K-Alu-D; spectra were not recorded for Nat-Alu due to a limited amount of the sample. The experimental 39K MAS NMR spectrum of K-Alu (Fig. 10a) exhibits a well-defined high-frequency singularity and then slowly tails off. This line shape is characteristic of a distribution of 39K quadrupole coupling constants. A good fit to the experimental spectrum has been obtained with a Gaussian distribution of the EFG tensor centered at $CQ = 1.7$ MHz with a FWHM of 0.7 MHz and $\delta_{iso} = 2$ ppm using the method of Coster et al. (1994). For K-Alu-D, $CQ = 1.8$ MHz (FWHM = 0.6 MHz), $\delta_{iso} = 0$ ppm, which is identical within the error-limits of those determined for K-Alu. We note that the calculations of the second-order quadrupolar line shape assume $\nu \gg \nu_{\gamma}$. This is not fulfilled for the experimental spectra due to the limited spinning speed of the 5 mm MAS probe, resulting in small deviations between the experimental and simulated line shapes.

The value of CQ and the chemical shift is consistent with reports for other inorganic materials (Bastow 1991; Smith 2000; Stebbins et al. 2002). The 39K quadrupole coupling is sensitive to ions in the first and second coordination sphere (Koller et al. 1994). Each potassium ion is coordinated by 12 O atoms of which six are the bridging Al$_2$-OH groups. Thus, 6 Al atoms are located in the first cation coordination sphere (Fig. 1). The ca. 10% Al vacancies in this sample inferred from the 27Al NMR implies that a large fraction (>50%) of K has at least one Al vacancy in the second coordination sphere accounting for the distribution of quadrupole couplings.

23Na MAS NMR of Na-Alu

The 23Na 3QMAS NMR spectrum (Fig. 11) reveals a single resonance with a distribution of both the chemical shift and quadrupole coupling. Sodium is located on a site with $5m$ point group symmetry implying an axially symmetric 23Na quadru-
pole tensor ($\eta_Q = 0$). $\delta_{\text{iso}} \approx -22$ ppm and C_Q is estimated to be 1.3 ± 0.3 MHz is estimated from the 3QMAS NMR spectrum assuming $\eta_Q = 0$.

DISCUSSION

27Al defect resonances and interpretation of quadrupolar parameters. Al$_1$ and Al$_D$ represent most of the total intensity ($> 90\%$) in the 27Al MAS NMR spectra of all samples studied. For example, using the 27Al NMR parameters listed in Table 2, the following composition is obtained from a fit of the spectrum of K-Alu (Fig. 3d): 60(5)$\%$ originates from Al$_1$, 35(5)$\%$ from Al$_D$, and approximately 2–4$\%$ each from Al$_{I1}$ and Al$_{I2}$. For each sample, the intensity of the Al$_D$ 27Al resonance is closely correlated with (1) the appearance of the Al-OH$_2$ resonance in the 1H NMR spectrum of the same sample and (2) the abundance of Al vacancies according to the elemental analyses. This correlation supports our assignment of the Al$_D$ resonance to an aluminum site adjacent to an Al vacancy (Fig. 2). Assignments for the Al$_I1$ and Al$_I2$ resonances are uncertain. They could arise from Al$_1$ sites in alunite with more than one adjacent Al vacancy or from impurities not detected by XRD. Solid-state NMR spectroscopy is often more sensitive to small concentrations of impurities than routine XRD, e.g. (Nielsen et al. 2002). The 27Al NMR parameters determined for Al$_I1$ and Al$_I2$ in K-Alu and Al$_I$ in Na-Alu are typical values observed for sulfate phases containing the hexaquion (Al(H$_2$O)$_6$) (Phillips and Feng, unpublished) or small hydrated Al oligomers. These phases are very difficult to detect as they may be present below the detection limit of powder XRD (2–3$\%$) or may be amorphous. Such impurities could have a different stoichiometry than alunite, and could skew the elemental analyses data, which determines the overall, bulk composition of the sample.

We can estimate the concentration of Al vacancies in alunite and hence the Al site occupancy from the equation

$$\text{Al}_1 + \text{Al}_D + \square = \text{I(Al1)} + 5/4\text{I(AlD)} = 100\%$$

(3)

This equation assumes that the vacancies are isolated and that Al$_{I1}$, Al$_{I2}$, and Al$_I$ arise from impurities. Using this assumption, each isolated vacancy (□) generates four Al$_D$ sites, cf. Figure 2. A 92(5)$\%$ occupancy of Al site is obtained for K-Alu using this method. The Al occupancy of other synthetic alunite and natroalunite samples (K-Alu-D, Na-Alu, and Na-Alu-D) are also around 90(6)$\%$. Thus, even a few percent of Al vacancies results in a significant concentration of the Al$_D$ site, which can be readily detected by 27Al NMR spectroscopy. Removal of more Al ions in the second coordination sphere is expected to create additional resonances, which we predict to have smaller quadrupole couplings. These may not be observed in the 27Al 3QMAS NMR spectra or may be responsible for all or some of the resonances assigned to impurities.

Quadrupole couplings are very sensitive to the local bonding environment especially first and second coordination spheres. For 27Al correlations between longitudinal strain for $C_Q(\text{Al})$ and octahedrally coordinated Al have been established (Ghose and Tsang 1973). The aluminum octahedron in the perfect alunite structure has a large variation in Al-O bond lengths between the axial and equatorial bonds of 1.864 and 1.951 Å, respectively (Wang et al. 1965). This difference results in a significant longitudinal strain (α) of 0.14 for alunite ($\alpha = \sum [1/2] l_i l_i'$), where l_i is the actual Al-O bond length, and l_i' is the ideal bond length.
in a perfect octahedron of the same total volume (Ghose and Tsang 1973). The observation of very large $^{27}\text{Al} C_Q$’s of 8.6 and 10.5 MHz for the AlI in hydronium alunite and alunite are in excellent agreement with $\alpha = 0.14$. The large difference in the size of the $^{27}\text{Al} C_Q$ between the two alunite samples is ascribed to the presence of different cations in the second coordination sphere and the small differences in lattice parameters. Removing an AlI in the second coordination sphere destroys the approximately fourfold symmetry at the Al site and relaxes the Al-O bond lengths and angles to accommodate the addition of a proton. Specifically, the Al-O distances are typically longer for Al-OH (ca. 1.9 Å) compared to bridging Al-OH (1.86 Å) (Schukow et al. 1999). Substitution of terminal OH ligands for bridging hydroxyls results in a smaller quadrupole coupling and a non-axially symmetric local ^{27}Al-bonding environment, as observed for AlI (Table 2).

The distribution of the quadrupole couplings in the less defective natural alunites and synthetic hydronium alunites is ascribed to small structural variations caused by distant Al defects propagating through the structure or A-site vacancies. The presence of AlI vacancies (and impurities) is readily confirmed by ^{27}Al MAS and 3QMAS NMR spectroscopy via the observation of new ^{27}Al NMR resonances.

Defect ^1H NMR resonances and alunite stoichiometry

The sample compositions derived from ^1H and ^2H NMR and elemental analysis, based on the convention for the compensation of Al vacancies and A-site defects by protons, do not agree very well. Furthermore, inconsistency between ^1H and ^2H NMR data suggest some loss of signal intensity in the ^1H MAS echo and ^2H MAS owing to strong homo-nuclear (^1H-^1H) dipolar couplings or molecular motion on the order of the NMR time scale. The ^2H MAS NMR spectra can be strongly effected by motion on the timescale governed by $\tau_c \approx (C_Q/v)^{1/2}$ (Maricq and Waugh 1979) where v is the spinning frequency and τ_c the motional correlation time. This effect can cause a significant broadening and even disappearance of the resonances in the limit of very slow motion. A distinct resonance that could be assigned to the Al-OD$_2$ group was not observed in the ^1H MAS spectra of samples that clearly contain AlI vacancies on the basis of elemental analysis and ^{27}Al NMR. This result suggests that the Al-OD$_2$ groups are either (1) rigid, not undergoing C$_2$ flipping motions, or (2) exhibit slow molecular motion that broadens the ssb beyond detection. The static ^1H NMR results for alunite suggest that the second hypothesis is correct.

No ^1H resonance is observed in any of the alunite and natroalunite samples investigated. On this basis, we estimate that the occupancy of $^1\text{H}_2\text{O}$ at the A site is less than 2% in these samples. Elemental analysis combined with the assumption of 100% A-site occupancy, however, suggests ca. 21% occupancy of $^1\text{H}_2\text{O}$ in the K-Alu and a stoichiometry $K_{0.79}(\text{H}_3\text{O})_{0.21}\text{Al}_{2.49}(\text{SO}_4)_{2.51}\text{Na}_{1.05}(\text{OH}_2)_{6.51}$ (Ohga 1970). For Na-Alu, a composition of $\text{Na}_{1.22}(\text{H}_2\text{O})_{1.22}\text{Al}_{2.17}(\text{SO}_4)_{2.17}(\text{O}_2)_{1.16}(\text{H}_2\text{O})_{2.16}$ is obtained from elemental analysis. The absence of ^1H resonance suggests that the $^1\text{H}_2\text{O}$ ions are found nearby the AlI vacancies so that the fourth Al-OH group at the vacancy is charge compensated by the $^1\text{H}^+$ of the $^1\text{H}_2\text{O}$ ion, as outlined in reaction 2. This would result in 4 Al-OH groups and a ^1H O molecule, which is consistent with the observed ^1H shift of 6.4 ppm for the “defect” resonance and the absence of a $^1\text{H}_2\text{O}$ resonance. Given the stoichiometry ($K_{x=0.51}\text{H}_2\text{O}$)$_y\text{Al}_{2.28}(\text{SO}_4)_{2.51}\text{Na}_{1.05}(\text{OH}_2)_{6.49}(\text{O}_2)_{1.16}(\text{H}_2\text{O})_{2.16}$ for K-Alu based solely on the elemental analysis, where we have made no assumption as to the mechanism for compensation of A- and B-site vacancies, Equation 1 predicts that $x = 1.53$ (3×0.51), while Equation 2 predicts that $x = 2.04$. Given the number of $^1\text{H}^+$ per formula unit (pfu, 0.79), no more than 0.21 $^1\text{H}^+$ ions pfu may be present. Hence x is constrained to a maximum value of $x = 1.75$, assuming all the $^1\text{H}^+$ ions are bound to the Al-OH$_2$ groups of the defect. In this case, the A site contains between 0.21 and zero water molecules. In this limit a ratio of the concentration of the AlI-^1H resonance and the Al-OH$_2$ groups of 4.25:1.75 is predicted, and ^1H intensities of 4.25:3.5. Any water present in the A site will contribute to the Al-OH$_2$ resonance. The AlI-^1H and Al-OH$_2$ peaks are of approximately equal intensity in the one-pulse spectra (Fig. 7a) supporting the substitution mechanism of Equation 2. The lower concentration of the Al-OH$_2$ resonance in the echo-spectrum is ascribed to problems associated with different T_2 relaxation in the echo experiment. Rigid Al-OH$_2$ groups clustered at the vacancy would exhibit strong ^1H-^1H homonuclear relaxation and these short spin-spin relaxation times (T_2) would result in a reduced intensity relative to the more weakly coupled AlI-OH sites in spectra obtained by echo methods. The discrepancy is more severe for natroalunite, where the Al-OH$_2$ peak in the ^1H MAS NMR echo and one-pulse spectra is not intense enough to account for the number of defects according to a similar analysis of the sample stoichiometry. It is also possible to speculate that this intensity is lost due to slow exchange of the protons among the larger number of structural defects. Moreover, slow motion may not only involve the Al-OH$_2$ groups, but also the Al-OH groups present in this much more defective sample. This may account for the noticeable shift of the AlI-^1H resonance from 3.9 ppm in K-Alu to 4.9 ppm in Na-Alu. Thus, care should be taken when interpreting the quantitative analysis of ^1H MAS NMR spectra of defect alunite samples. Further variable temperature ^1H and ^2H NMR studies are needed to fully understand the complex proton system in defect alunite samples, but is beyond the scope of this paper.

Finally, the results for the alunite and natroalunite samples suggests that the discrete $^1\text{H}_2\text{O}$ resonance observed in H$_2$O-Alu at 10.6 ppm may arise from the stoichiometric regions in the sample, where the $^1\text{H}_2\text{O}$ ions are far from AlI vacancies. This conclusion is further supported by the ^{27}Al ^1H HETCOR NMR experiments, which show that $^1\text{H}_2\text{O}$ ions are near only AlI sites. Thus, reaction 2 takes place in defect alunite samples and the existence of the $^1\text{H}_2\text{O}$ ion and the absence of vacancies on the A site is closely linked to the stoichiometry of B site in alunite. It is likely that similar defect compensation mechanisms occur in non-stoichiometric jarosites and experiments are currently in progress to test this hypothesis.

ACKNOWLEDGMENTS

U.G.N. acknowledges the “Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry” and Carlsbergfondet (ANSt-1323/20) for financial support. J.M. appreciates the support that came from the Hess post-doctoral fellowship at the Department of Geosciences at Princeton University. We thank S. Hirth-Walther for help with the chemical analyses of the alunite samples. This work was supported by NSF-grants CHE-0221934 to fund the Center for Environmental Molecular Science and CHE-03-21001 for instrumentation.